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ABSTRACT 

The largest error component on the carrier-phase 
observations is generally caused by carrier-phase 
multipath offsets.  This generally results in a slow 
oscillating cyclic offset which must be averaged (either 
through satellite or vehicle motion) before reliable 
ambiguity resolution can be performed for kinematic 
positioning.  NAVSYS has developed a digital spatial 
processing receiver that uses the spatial degrees of 
freedom within an antenna array to minimize multipath 
errors on the carrier-phase observations.  This in turn 
makes the ambiguity solution more reliable and reduces 
the number of processing cycles needed to result in a 
kinematic position fix.  In this paper, test results are 
presented showing the reduction in the carrier phase 
errors when using this approach.  Kinematic positioning 
test results are also shown using the HAGR digital beam-
steering GPS receiver. 

INTRODUCTION 

Multipath errors are caused by the receiver tracking a 
composite of the direct GPS signals and reflected GPS 
signals from nearby objects, such as the ground, a 
building or ship’s mast (see Figure 1).  Multipath errors 
can be observed by their effect on the measured 
signal/noise ratio and the code and carrier observations, as 
described below.[1,2,3] 
 
Signal/Noise Ratio  When multipath is present, the 
signal/noise ratio magnitude varies due to the constructive 
and destructive interference effect. The peak-to-peak 
variation is an indication of the presence of multipath 
signals, as shown by the following equation where A is 
the amplitude of the direct signal, AM is the amplitude of 
the reflected multipath signal, θ is the carrier phase offset 
for the direct signal and θM is the carrier phase offset for 
the multipath signal.   
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The multipath carrier phase error (θ~ ) is related to the 
received multipath power level from the above equation.  
This results in a cyclic carrier phase error as the multipath 
signals change from constructive to destructive 
interference that has the peak-to-peak carrier phase error 
shown in Figure 3.   Multipath also causes the signal-to-
noise ratio to vary between the peak and minimum levels 
shown in Figure 2 depending on the relative 
Multipath/Signal (M/S) strength.  For low elevation GPS 
satellite signals, it is quite common to get M/S received 
power levels as high as -3 dB.  This will cause a cyclic 
error on the carrier phase observations of around +/- 2 cm.  
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For precision Kinematic Carrier Phase Tracking (KCPT) 
GPS applications, this error will affect the ability to 
perform rapid carrier cycle ambiguity resolution.  
Analysis performed for KCPT applications, such as the 
Shipboard Relative GPS (SRGPS) Joint Precision 
Approach and Landing System (JPALS), has determined 
that M/S levels must be below –12 dB to meet the 
program’s objectives for reliable carrier phase ambiguity 
resolution.  Testing performed by NAVAIR on the USS 
Theodore Roosevelt has indicated that conventional GPS 
antenna solutions, such as those shown in Figure 4, do not 
meet this objective.  In this paper, preliminary test results 
are included that show the performance advantages of a 
digital beam-steering receiver for minimizing multipath 
effects and providing precision kinematic GPS 
positioning.  
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Figure 1  Typical Multipath Scenario 

 

 
Figure 2  Multipath Amplitude Effect 
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Figure 3 Multipath Peak Phase error vs. Attenuation 
(dB) 
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Figure 4  Shipboard Relative GPS Carrier Landing 
Test Installation 

HAGR PRINCIPLE OF OPERATION 

The NAVSYS High-gain Advanced GPS Receiver 
(HAGR) is a digital beam steering receiver designed for 
GPS satellite radio navigation and other spread spectrum 
applications.  This is available for both military and 
commercial precision GPS applications and uses the 
modular assembly shown in Figure 5 to allow it to be 
easily configured to meet a user's specific requirements. 
 
The HAGR system architecture is shown in Figure 6.  The 
signal from each antenna element is first digitized using a 
Digital Front-End (DFE).  This bank of digital signals is 
then used to create the composite digital beam-steered 
signal input for each of the receiver channels by applying 
a complex weight to combine the antenna array outputs.  
As shown in Figure 6, the array weights are applied 
independently for each of the satellite channels.  This 
allows the antenna array pattern to be optimized for each 
satellite signal tracked. 
 
The weights for each channel are dynamically 
downloaded through software control.  The HAGR 
software can automatically calculate the beam steering 



 

pattern for each satellite based on the known receiver 
location, the broadcast GPS satellite location and the 
input attitude of the antenna array.  For static applications, 
the array can either be configured pointing north (the 
default attitude) or the actual attitude is programmed into 
the configuration file.  For mobile applications, the 
antenna array attitude is input through a serial port from 
either a magnetic compass and tilt sensor or and inertial 
navigation system.  The HAGR also includes a mode 
where the antenna weights are read from a user definable 
file based on the satellite azimuth and elevation.  Matlab 
tools exist for creating these antenna weights based on 
specific user requirements. 
 

 

Figure 5  HAGR Assembly 
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Figure 6 HAGR System Architecture 

 

In Figure 7 and Figure 8, the antenna patterns created by 
the digital antenna array are shown for four of the 
satellites tracked.  The HAGR can track up to 12 satellites 
simultaneously.  The antenna pattern provides the peak in 
the direction of the satellite tracked (marked ‘x’ in each 
figure).  The beams follow the satellites as they move 
across the sky.  Since the L2 wavelength is larger than the 
L1 wavelength, the antenna beam width is wider for the 
L2 antenna pattern than for the L1. 

 
Figure 7  L1 Antenna Pattern 

 
Figure 8  L2 Antenna Pattern 

KINEMATIC POSITIONING ALGORITHM  

The steps followed by the relative kinematic positioning 
algorithm developed by NAVSYS are illustrated in Figure 
9.  Kinematic positioning and alignment relies on the 
relationship of the carrier phase observations to the range 
observations described in the following equation. 
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where 
PR = pseudo-range on L1 or L2 frequencies (meters) 
CPH = carrier phase on L1 or L2 frequencies (meters) 
RT = true range (meters) 
bu = range equivalent receiver clock offset (meters) 
bsv = range equivalent satellite clock offset (meters) 
T = tropospheric delay (meters) 
I = ionospheric delay (meters)  
n = measurement noise (meters) 
N = CPH integer (cycles) 
λ = carrier wavelength (meters) 
 
The pseudo-range observations observe the range from 
the GPS satellites to the UE (R) offset by the user and 
satellite clock (b), the tropospheric delay (T) and the 
ionospheric delay (I).  The ionospheric delay is different 
on the L1 and L2 observations as it is inversely 
proportional to the frequency squared and so can be 
removed from the PR by differencing.  The DGPS 
corrections will remove any errors in the navigation 
solution caused by satellite position and clock offsets.  
The accuracy of the PR derived DGPS corrected position 
solution is a function of the pseudo-range noise which 
includes receiver noise and multipath errors.  The 
GPS/inertial navigation solution will filter the short term 
noise effects, but it cannot correct for correlated noise 
errors from multipath.  This results in the final DGPS 
corrected solution accuracy are generally on the order of 1 
to 1.5 meters due to these uncorrected errors. 
 
The effect of multipath is much smaller on the GPS 
carrier phase observations.  As shown in Equation 1, the 
carrier phase (CPH) observation provides the same 
observability of user position through the range to the 
GPS satellite but includes an additional uncertainty of the 
integer number of cycles to the satellite (N).  If this 
integer ambiguity is resolved, then the position accuracy 
derived from the CPH observation accuracy is a function 
of the carrier phase noise and carrier multipath errors 
which are on the order of a few centimeters.  The process 
of resolving this integer cycle ambiguity is generally 
termed cycle ambiguity resolution and is the key to 
performing kinematic GPS positioning. 
 
The steps employed by the kinematic positioning 
algorithm to resolve the integer ambiguity are illustrated 
in Figure 9 and described below. 
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Figure 9  Kinematic Positioning Algorithm  

rkp_ambiguity   
The first step is to create the carrier phase corrected 
measurement residuals.  These are derived from the 
following equation and include: carrier phase corrections 
(CPC) from the reference location, estimated range to the 
satellite from the DGPS solution and the estimated 
atmospheric errors (tropo and iono).  As shown in the 
following equation, this measurement residual observes 
the position error in the DGPS solution (relative to the 
reference location), the residual ionospheric and 
tropospheric errors and the integer ambiguity offset.  This 
reduces the ambiguity resolution process to a single 
(wide-lane) ambiguity NW=N1-N2.  The wide-lane 
wavelength is 86 cm as opposed to the L1 wavelength of 
19 cm.  This larger resolution wavelength is easier to 
observe allowing ambiguity resolution to occur much 
faster with L1/L2 dual frequency observations than for 
single frequency (L1 only) GPS. To remove the effect of 
the clock bias, the single-differenced observations are 
used (zsd) since the clock bias is common between the 
GPS satellite observations 

Equation 2 
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calc_rkp 
The purpose of the calc_rkp function is to compute the set 
of possible ambiguities for each of the satellite 
observations.  This is performed by computing all of the 
likely ambiguities based on an initial search space that the 
ambiguity solution must fall within (see Figure 10).  The 
search space is dictated by the initial uncertainty of the 
GPS/inertial navigation solution (PDGPS).  Each ambiguity 
must pass the following criteria to be considered a valid 
member of the ambiguity set (Nset). The geometry vector 
H is calculated from the satellite line of sight vectors.  
The scale factor α is computed based on the desired 
probability of missed detection for the KGPS solution, 
based on the equation below. 

Equation 3 
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Figure 10 GPS/Inertial Solution Space Ambiguity Set 

fdi_prob 
The correct ambiguity from the set is isolated by using an 
integrity check to reject the incorrect solutions.  For the 
correct ambiguity solution, the fault vector (f), computed 
from the following equation will include only the receiver 
noise errors.  For all other values, the f vector will also 
include errors due to the ambiguity error.   

Equation 4 
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The S matrix has Nsv-4 degrees of freedom.  As the 
number of GPS satellites in the solution increases, the 
ability to distinguish between the different members of 
Nset improves, and also the initial DGPS search space 
ellipse gets smaller.  The f vector is accumulated over 
multiple samples to determine the correct ambiguity.  The 
smaller the noise (n) on the observation, the faster the 
algorithm can differentiate between the different 
ambiguities and pick the correct solution to allow 
kinematic positioning to be performed. 

Pseudo-Range and Carrier-Phase GPS Corrections 
The pseudo-range and carrier-phase correction messages 
are generated using observations from a reference 
receiver.  The pseudo-range corrections are used to 
compute the DGPS navigation solution.  The carrier-
phase corrections are used to compute the KGPS 
positioning solution.  The messages generated include the 
following information.  This format is in accordance with 
RTCM SC-104 [4].   
 
PRC Message (repeated for each of Nsvs on L1 and 
L2) 
 Time GPS time of correction 
 PRN SVID correction applies to 
 PRC  Pseudo-range correction (meters) 
 RRC Rate of change of correction (m/s) 
 IOD Issue of data for related ephemeris 

used 
 Sigma_prc  Estimated accuracy of correction 

(m) 
 
CPC Message (repeated for each of Nsvs on L1 and 
L2) 
 Time GPS time of correction 
 PRN SVID correction applies to 
 CPC Carrier-phase correction (meters) 
 DCPC Rate of change of correction (m/s) 
 CLOC Loss of phase lock counter 

(indicates ambiguity must be 
recomputed) 

 Sigma_cph Estimated accuracy of correction 
(m) 

MULTIPATH TESTING  

At the time of writing this paper, only a single digital 
beam-steering L1/L2 HAGR was available for testing.  To 
evaluate the multipath performance improvements, testing 



 

was performed by partitioning the HAGR 7-element 
antenna array (see Figure 11) into two 4-element sub-
arrays as shown in Figure 12.   The carrier phase errors 
provided by the individual antenna elements and the 
digital beam-steered results from the two sub-arrays was 
compared.  When a full 7-element HAGR array is used, 
further performance improvements could be expected 
over the dual 4-element test results presented here.  To 
quantify the level of multipath, both the carrier phase 
relative to the center element and the signal amplitude is 
plotted in Figure 13 and Figure 14. From the peak-to-peak 
variation of the IQ amplitude, App ≈ 40, and phase, 

cm2≈∆θ , we can see that the signal to multipath ratio is 
roughly 5 dB using a single element (see Figure 2 and 
Figure 3).   

 

 
Figure 11  HAGR 7-Element Array   
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Figure 12 HAGR Dual Sub-array Test Setup 

 
Figure 13 Amplitudes of array 1 elements (5s moving 
average) 

 
Figure 14 Carrier Phase of array 1 (thick lines: 
expected phase offset) 

The spatial information from the 7-element phased array 
was also processed to identify the source of the multipath 
through direction of arrival (DOA) estimation using the 
MUSIC algorithm.  The results shown in Figure 15 shows 
both the direct signals and a strong multipath signal being 
receiver from the NAVSYS’ building  



 

 
Figure 15 MUSIC direction of arrival estimation 

To test the single element and the digital beam-steered 
carrier phase accuracy, the carrier phase errors were 
compared between the center element and the two 4-
element sub-arrays.  These results are plotted in Figure 16 
for both the single element and the beam-steered results.  
From this figure, the peak-to-peak phase error is in the 
order of 3.5 cm when using a single antenna element.  
With digital beamforming the phase error is reduced to 
about 1 cm.  The amplitude of the multipath is derived 
from the peak phase variation seen in Figure 16 and 
referencing Figure 3. 

dBSMRcmpp 101 =→≈∆θ  
This test shows that the required signal to multipath ratio 
of 10 dB is realized when using only a 4-element sub-
array. A 7-element array will provide further 
improvements allowing the signal to multipath ratio goal 
of 12 dB to be achieved. 

 
Figure 16 Single Element and Digital Beam-Steered 
Carrier Phase Errors  

HAGR KINEMATIC POSITIONING TEST DATA 

To demonstrate the precise positioning performance 
possible when using the HAGR for kinematic positioning, 
a test was performed using the HAGR receiver located at 
NAVSYS facilities and the Alternate Master Clock 
(AMC2) reference station operating at Schriever AFB 
some 25 miles distant.  The results from this kinematic 
positioning solution are shown in Figure 17 and Figure 
18.  The RMS position variation is between 2 to 9 cm on 
each axis (see Figure 18).  . 

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2

-0.2

-0.1

0

0.1

0.2

xcr in 11xPcr ellipse (Prob=0.990000)

 

Figure 17  HAGR Widelane Kinematic Position 
(relative to AMC2) 
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Figure 18  NED Widelane Position Variation (m) 

The KGPS algorithm also estimates the carrier phase 
noise from the fault vector.  From Figure 19 this 
converges to a value of within 1 cm (0.04 cycles) for the 
L1 and L2 phase measurements.  This phase noise 
includes both the effect of the HAGR carrier phase errors 



 

and also the AMC2 carrier phase errors.  Further testing is 
planned at a later date to evaluate the performance 
improvements that could be achieved using a HAGR 
receiver as both the reference station and the remote unit 
for kinematic positioning 

0 500 1000 1500 2000 2500 3000 3500 4000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

si
g cph

Time (secs) since t0= 539183.000303  
Figure 19 Estimated Carrier Phase Noise from Fault 
Vector (cycles) 

CONCLUSION 

The testing performed to date has shown that there is a 
significant reduction in the peak-to-peak carrier phase 
error from multipath when using a digital beamsteering 
receiver.  With dual 4-element sub-arrays, the peak-to-
peak carrier phase error attributed to multipath was less 
than 1 cm compared to 3.5 cm when using a single 
antenna element.  With a larger antenna array, the 
performance could be expected to further improve.  The 
HAGR kinematic GPS position solution when operating 
with the AMC2 reference station located at Schriever 
AFB was within 2 – 9 cm (RMS) on each axis.  This 
performance includes the carrier phase errors from both 
the HAGR and the AMC2 reference station.  Further 
testing is planned at a later date to show what further 
performance improvements could be achieved when using 
a HAGR as both a reference station and a remote receiver. 
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